E2F-2 (TFE-25)抗体 E2F-2 (TFE-25) X

E2F-2 (TFE-25)抗体

E2F-2 (TFE-25) X

详细描述:
The human retinoblastoma gene product appears to play an important role in the negative regulation of cell proliferation. Functional inactivation of Rb can be mediated either through mutation or as a consequence of interaction with DNA tumor virus-encoded

应用范围:WB, IP, IF, IHC(P), ELISA; 反应种属:m, r, h; Isotype:mouse monoclonal IgG1; 标记:无标记。

货号 产品名称 品牌 购买
货号 名称 单位 购买
sc-9967 E2F-2 (TFE-25)抗体 200 µg/ml 咨询客服
sc-9967 X E2F-2 (TFE-25)抗体 200 µg/0.1 ml 咨询客服

PA Tag 新型标签系统 PA Tag

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

PA tagPA Tag 新型标签系统                              PA Tag

亲和纯化标签蛋白!

  PA tag 系统是利用高亲和性&高特异性单抗(NE-1)识别肽标签(GVAMPGAEDDVV)的重组蛋白新型检测系统。PA tag 系统中的抗体琼脂糖可通过免疫沉淀法纯化 PA tag 融合蛋白,并可在洗涤后获得再生。中性 pH 条件下 PA tag 肽简单方便地竞争性洗脱 PA tag 融合蛋白。

  PA tag 系统的亲和性和特异性优于现有标签系统,抗体琼脂糖可再生 60 次,极大地降低成本,可用于免疫细胞化学、免疫印迹和流式细胞术,是动物宿主细胞重组蛋白生产的有效工具。

原理

PA Tag 新型标签系统                              PA Tag

载体列表


产品名称(载体名称)

抗性

规格

产品编号

大肠杆菌抗性

真核细胞抗性

pCAG-Ble PA tag-C

Bleomycin

20 μg

161-26861

pCAG-Ble PA tag-N Signal Plus

20 μg

168-26871

pCAG-Bsd PA tag-C

Blasticidin S

20 μg

165-26881

pCAG-Bsd PA tag-N Signal Plus

20 μg

162-26891

pCAG-Hyg PA tag-C

Hygromycin B

20 μg

165-26901

pCAG-Hyg PA tag-N Signal Plus

20 μg

162-26911

pCAG-Neo PA tag-C

Kanamycin

G418

20 μg

169-26921

pCAG-Neo PA tag-N Signal Plus

20 μg

166-26931

优点、特色


PA Tag 新型标签系统                              PA Tag

案例、应用


【使用例子:PA 标签抗体,大鼠单克隆抗体(NZ-1)】


  NZ-1 是特异性识别 PA tag(GVAMPGAEDDVV)的单克隆抗体,能用于检测动物细胞表达的 PA tag 融合蛋白,亲和性很高并能简单地用肽洗脱!已确认不存在交叉反应的物种包括小鼠、大鼠、仓鼠和犬类。

PA Tag 新型标签系统                              PA Tag


浓度:       标签表示(约1.0 mg/mL)

配方:       1× PBS(pH 7.5)水溶液

克隆号:    NZ-1

亚型:       IgG2a

应用:  免疫印迹 0.01 – 1 μg/mL  

                 免疫沉淀 10 – 50 μg/assay  

                 流式细胞术 0.1 – 10 μg/mL  

                 免疫细胞化学 0.1 – 10 μg/mL

保存条件:2–10°C 避免反复冻融


【NZ-1 Fab和PA肽的复合体结构分析】

PA Tag 新型标签系统                              PA Tag



标记抗PA tag抗体

PA tag-EGFP-6×His tag,重组,溶液



亲和标签比较

      亲和标签

     TARGET

             PA

       6 x His

       c-Mys

      HA

      GST

序列

(YPGQ)5V

GVAMPGAEDDVV

HHHHHH

EQKLISEEDL

YPYDVPDYA

残基数

21

12

6

10

9

218

分子量(kDa)

2.34

1.16

0.84

2.34

1.16

0.84

配位子

TARGET tag

PA tag

Ni, Co, Zn, Cu

c-Myc tag

HA tag

GST

抗体琼脂糖的

再利用

最高可再生循环利用40次

最高可再生循环利用60次

不可再生

不可再生

不可再生

不可再生

重组蛋白

纯化成本

+

+

+

++

++

+

单克隆抗体结合力(KD(M))(数字越小,亲和力越高)

1.0×10-8

4.9×10-10

Ni-NTA:

 1.0×10-5~6

2.2×10-9

2.8×10-9

Glutathione:

  1.0×10-5~6

亲和性

++++

+++++

+++

++++

++++

++++

和动物细胞外(培养基)的蛋白非特异性结合

+

+

+++++

+++

+++

++++

和动物细胞内蛋白的非特异性结合

+

+

++++

++++

+++

++++

肽洗脱

+++

+++

咪唑洗脱

++

++

谷胱甘肽洗脱

本比较表由富士胶片和光独立完成。样品、检测方法及手法不同有可能产生的特异性有变化,不能保证各种亲和标签的性能。

Target tag 系统和 Pa tag 系统同属Wako亲和标签系统,详情请联系经销商。        


 Wako新一代超亲和性的亲和标签系统“PA Tag System”http://labchem.fujifilm-wako.com.cn/resources/show/14.html


1. Fujii, Y. et al., "PA tag: A versatile protein tagging system using a super high affinity antibody against dodecapeptide

     derived from human podoplanin.", Protein Exp. Purif., 95, 240-247(2014).

2. Fujii, Y. et al. 新規アフィニティータグシステム“PAタグ”の利用法~蛋白質の精製および検出~蛋白質科学会アーカイブ, 7,e075

      (2014)

3. Kitago,Y et al.“ Structural basis for amyloidogenic peptide recognition by sorLA.”Nat Struct Mol Biol., 22(3):199-206(2015)


产品编号 产品名称 产品规格 产品等级
161-26861 pCAG-Ble PA tag-C 
 pCAG-Ble PA 标签-C
20 μg for Genetic Research
168-26871 pCAG-Ble PA tag-N Signal Plus
 pCAG-Ble PA 标签-N 信号 增加型
20 μg for Genetic Research
165-26881 pCAG-Bsd PA tag-C
 pCAG-Bsd PA 标签-C
20 μg for Genetic Research
162-26891 pCAG-Bsd PA tag-N Signal Plus
 pCAG-Bsd PA 标签-N 信号 增加型
20 μg for Genetic Research
165-26901 pCAG-Hyg PA tag-C 
pCAG-Neo PA 标签-C
2 0μg for Genetic Research
162-26911 pCAG-Hyg PA tag-N Signal Plus
 pCAG-Hyg PA 标签-N 信号 增加型
20 μg for Genetic Research
169-26921 pCAG-Neo PA tag-C
 pCAG-Neo PA 标签-C
20 μg for Genetic Research
166-26931 pCAG-Neo PA tag-N Signal Plus
 pCAG-Neo PA 标签-N 信号 增加型
20 μg for Genetic Research

Phos-tag™ 凝胶荧光染料

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ 凝胶荧光染料Phos-tag™ 凝胶荧光染料

 


Phos-tag™ 凝胶荧光染料,是一种可在生理pH范围内,对凝胶中的磷酸化蛋白进行染色的荧光染料。进行了SDS-PAGE,用本产品处理聚丙烯酰胺凝胶,可以对磷酸化蛋白进行特异性染色。

本系列有波长不同的 Yellow(黄)、Magenta(品红)、Cyan(蓝绿)、Aqua(浅绿)四种颜色。每管规格为 0.2 mg,可对约20个迷你凝胶进行染色。

 

购买前请注意:

使用Phos-tag 凝胶荧光染料,需要用到 Mixed reagents for Phos-tag™ Common Solution 5×(产品编号:383-15231)。请一同购买。


Phos-tag™ 凝胶荧光染料



◆特点


● 高灵敏度

● 在生理pH下即可染色

● 选择性与pSer、 pTyr、 pHis以及pAsp残基结合

● 无需放射性物质、化学物质标签、抗体

● 2小时内完成染色

◆产品对比


                  其他公司产品A


● 凝胶pH:2~4

● 5个步骤(固定、清洗、染色、脱色、清洗)

● 所需时间:≧5小时

● 溶液更换次数:11次

● 卵清蛋白检测上限:~5 ng/lane

  Phos-tag™ Magenda(品红)


● 凝胶pH:7~8(不进行脱磷酸化)

● 3个步骤(固定、染色、清洗)

● 所需时间:≦2小时

● 溶液更换次数:4次

● 卵清蛋白检测上限:~1 ng/lane

◆应用实例①


磷酸化蛋白与非磷酸化蛋白的染色 Phos-tag™ Aqua(浅绿)

Phos-tag™ 凝胶荧光染料

Lane.No.()内为磷酸基团数目


1. Marker

2. α-酪蛋白(9P)

3. 经ALP处理的α-酪蛋白

4. β-酪蛋白(5P)

5. 经ALP处理的β-酪蛋白

6. 卵清蛋白(2P)

  7. 经ALP处理的卵清蛋白

  8. 胃蛋白酶(1P)

  9. 经ALP处理的胃蛋白酶

10. β-半乳糖苷酶

11. 牛血清白蛋白

12. 碳酸酐酶

Phos-tag™ Aqua(浅绿)染料选择性:用Phos-tag™ Aqua(浅绿)对10%(w/v)的PAGE胶进行染色,其中分别含有四组完整的以及经ALP(碱性磷酸酶)处理的磷酸蛋白(α-酪蛋白,β-酪蛋白,卵清蛋白和胃蛋白酶各1 μg)(左),然后使用考马斯亮蓝CBB G-250染色(右)。

成功特异性地检测出SDS-PAGE后的磷酸化蛋白。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师

 


◆应用实例②


使用Phos-tag™ 荧光凝胶染料的组氨酸、天门冬氨酸的磷酸化分析

细菌通过将信息从组氨酸激酶EnvZ传递到应答调控子OmpR来调节基因的表达。分别分析有自磷酸化能力的EnvZ激酶和被EnvZ催化的OmpR中组氨酸和天门冬氨酸的磷酸化。


Phos-tag™ 凝胶荧光染料

Phos-tag™ 凝胶荧光染料

可以确认Phos-tag™ Magenta(品红)和Phos-tag™ SDS-PAGE 这两种试剂中的His和Asp的磷酸化随激酶的处理时间经过不断增强。尤其是使用Phos-tag™ Magenta(品红)时,可以仅检测出His磷酸化或Asp磷酸化。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师

 


◆应用实例③


用于筛选组氨酸激酶抑制剂(新型抗生素)

使用Phos-tag™荧光凝胶染料,筛选组氨酸激酶抑制剂。


Phos-tag™ 凝胶荧光染料


证实磷酸化依赖组氨酸激酶抑制剂浓度被抑制。


数据提供:广岛大学研究生院 医学系科学研究科 医药分子机能科学研究室 木下惠美子老师、木下英司老师、小池透老师



参考文献


“Quantitativemonitoring of His and Asp phosphorylation in a bacterial signaling system byusing Phos-tag Magenta/Cyan fluorescent dyes”, Emiko Kinoshita-Kikuta, HiroshiKusamoto, Syogo Ono, Keisuke Akayama, Yoko Eguchi, Masayuki Igarashi, ToshihideOkajima, Ryutaro Utsumi, Eiji Kinoshita, Tohru Koike, Electrophoresis, 2019

◆使用方法

Phos-tag™ 凝胶荧光染料

※调整平衡及清洗溶液以及染色溶液必须使用Mixed reagents for Phos-tag™ Common Solution 5× (产品编号:383-15231)。

◆激发波长/荧光波长

Phos-tag™ Yellow(黄) Phos-tag™ Magenta(品红)
Phos-tag™ 凝胶荧光染料 Phos-tag™ 凝胶荧光染料

Ex/Em=505 nm/514 nm



Ex/Em=547 nm/561 nm



Phos-tag™ Cyan(蓝绿) Phos-tag™ Aqua(浅绿)
Phos-tag™ 凝胶荧光染料 Phos-tag™ 凝胶荧光染料
 Ex/Em=643 nm/661nm Ex/Em=551 nm/564 nm



◆产品列表


产品编号 产品名称 规格
380-15241 Phos-tag™ Yellow
Phos-tag™ 黄色荧光染料
0.2 mg
386-15221 Phos-tag™ Magenta
Phos-tag™ 品红荧光染料
0.2 mg
382-15201 Phos-tag™ Aqua
Phos-tag™ 浅绿荧光染料
0.2 mg
389-15211 Phos-tag™ Cyan
Phos-tag™ 蓝绿荧光染料
0.2 mg
383-15231

Mixed reagents for Phos-tag™ Common Solution

Phos-tag™ 5×染色通用混合溶液

1 EA


◆相关产品


Phos-tag™ Acrylamide

产品编号 产品名称 规格
304-93521 Phos-tag™ Acrylamide AAL-107
Phos-tag™ 丙烯酰胺
10 mg
300-93523 2 mg
304-93526 Phos-tag™ Acrylamide AAL-107 5 mM Aqueous Solution
Phos-tag™ 丙烯酰胺5 mM水溶液
0.3 mL



SuperSep™ Phos-tag


用于Bio-Rad伯乐电泳仪

货号

品名

电泳仪

规格

198-17981

SuperSep™ Phos-tag™ (50 μmol/L), 7.5%, 17 well,

83×100×3.9mm

Mini-PROTEAN® 

Tetra Cell

(Bio-Rad Laboratories, Inc.)

5 块

195-17991

SuperSep™ Phos-tag™ (50 μmol/L), 12.5%, 17 well,

83×100×3.9 mm

5 块

用于Life Technologies伯乐电泳仪

货号

品名

电泳仪

规格

192-18001

SuperSep™ Phos-tag™ (50 μmol/L), 7.5%, 17 well,

100×100×6.6 mm

XCell SureLock® 

Mini-Cell

(Life Technologies, Inc.)

5 块

199-18011

SuperSep™ Phos-tag™ (50 μmol/L), 12.5%, 17 well,

100×100×6.6 mm

5 块


Phos-tag Biotin


产品编号 产品名称 规格
301-93531 Phos-tag™ Biotin BTL-104
Phos-tag™ 生物素
10 mg
308-97201 Phos-tag™ Biotin BTL-111 1 mM Aqueous Solution
Phos-tag™ 生物素1 mM水溶液
0.1 mL


Phos-tag Agarose


产品编号 产品名称 规格
302-93561 Phos-tag™ Agarose
Phos-tag™ 琼脂糖
0.5 mL
308-93563 3 mL

Phos-tag Tip

产品编号 产品名称 规格
387-07321-8P Phos-tag™ Tip
Phos-tag™ 琼脂糖枪头
8 pcs
387-07321 8 pcs×10


Phos-tag Mass Analytical Kit


产品编号 产品名称 规格
305-93551 Phos-tag™ Mass Analytical Kit
    Phos-tag™ 质谱分析试剂盒
1 set

※ 本页面产品仅供研究用,研究以外不可使用。


产品编号 产品名称 产品规格 产品等级

Phos-tag™ SDS-PAGE相关产品

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ SDS-PAGE相关产品Phos-tag SDS-PAGE相关产品

◆Reagents for Phos-tag™ SDS-PAGE gel preparation

 

Product Name

Pkg. Size

Wako

Cat. No.

Use Application

30 w/v% Acrylamide/Bis Mixed solution(29:1)

500 mL

015-25635

Ready-to-use"Solution A".30%T, 3.3%C

Agarose H(High-strength type)

1 g

315-01203

High-strength Agarose has high strength even in a low-agarose environment and is suitable for electrophoretic migration of large nucleic acid fragments. It can be used in a concentration range of 0.2 – 1% and a separation range of 1 – 200 kbp.

10 g

319-01201

25 g

317-01202

10% SDS Solution

100 mL

311-90271

Ready-to-Use "Solution D"

500 mL

313-90275

Manganese(Ⅱ) Chloride Tetrahydrate,
  99.0+ %(Titration)

25 g

134-15302

for Molecular Biology Please use for preparation of "Solution F"

100 g

136-15301

Zinc Chloride

25 g

268-01902

for Molecular Biology. Please use for preparation of "Solution M"

Bis-Tris

100 g

345-04741

Please use for preparation of "Solution N"

Sodium Hydrogensulfite〈JIS   Special Grade〉

25 g

196-01372

Please use for preparation of "Solution O"

100 g

198-01371

Sodium Hydrogensulfite
  〈For Molecular Biology〉

100 g

190-16461

MOPS

100 g

345-01804

Please use for preparation of "Solution P"

250 g

341-01801

MOPS〈For Molecular Biology〉

100 g

341-08241

500 g

343-08245

Separating Gel Buffer Solution (x4)

250 mL

192-11041

Ready-to-Use mixed solution of“Sol. B”and“Sol. D”for preparation of Resolving Gel. Contains SDS.

Stacking Gel Buffer Solution (x4)

250 mL

199-11051

Ready-to-Use mixed solution of“Sol.C”and“Sol. D”for preparation of Stacking Gel. Contains SDS.

N,N,N',N'-Tetramethylethylenediamine (TEMED)

25 mL

205-06313

for Electrophoresis

10 w/v% Ammonium Peroxodisulfate Solution
  (Ammonium Persulfate Solution)

25 mL

019-15922

Ready-to-Use“Solution G”



Premixed Buffers


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

Running Buffer Solution (x10)

1 L

184-01291

Ready-to-Use concentrated "Solution H"

SDS-PAGE 10x Running Buffer

1 L

312-90321

Ready-to-Use concentrated "Solution H"

5 L

318-90323

SDS-PAGE Buffer, pH 8.5

5 L

192-16801

Ready-to-Use "Solution H", 1×buffer.

Tricine Running Buffer Solution (×10)

1 L

200-17071

Composition: 0.5 M Tris/0.5 M Tricine/1% SDS

Sample Buffer Solution (2ME+) (×2)

25 mL

196-11022

Sample buffer for Laemmli SDS-PAGE containing 2-mercaptoethanol

Sample Buffer Solution
  with 3-Mercapto-1,2-propanediol (×2)

25 mL

196-16142

Laemmli Sample Buffer containing   3-mercapto-1,2-propanediol (non-hazardous chemical) as substitute for 2-ME

AquaBlot™ 10×High Efficiency Transfer Buffer

1 L

015-26213

Can use it to transfer to a

menbrane with high efficience.



◆Enzyme for Dephosphorylation


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

Alkaline Phosphatase(for   Biochemistry)

50 U

018-10693

Applicable to dephosphorylation of proteins

100 U

012-10691



◆Reagents for Staining


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

Quick CBB Plus

250 mL

174-00553

Ready-to-Use Sol. K. Fixing and destaining procedure are not required.
No organic solvents are necessary.
Protein bands are stained in 10 minutes.

1 L

178-00551

Quick-CBB
  ・Staining solution A: 1L x 1
  ・Staining solution B: 1L x 1

2 L

299-50101

By mixing staing solution A and B,   ready-to-Use Sol. K

Silver Stain MS Kit

20 tests

299-58901

Modified proteins by glycosilation and/or phosphorylation can be detected sub-nanogram level on the electrophoretic gel.

Silver Stain Kit Wako

for 10 gels

299-13841

50~100 times more sensitive than CBB method.

Silver Stain Ⅱ Kit Wako

for 10 gels

291-50301

This kit contains Stopper, which can be adjusted the staining strength.

Negative Gel Stain MS Kit

20 tests

293-57701

Applicable to mass analysis and Western blot



Protein Size Marker


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

WIDE-VIEW Prestained Protein Size Marker Ⅲ

25 μL

236-02463

A recommendable prestained marker used with Phos-tag™ SDS-PAGE because obtained bands are less distorted.

500 μL

230-02461

500 μL x3

234-02464



Positive Control(for confirmation of separation capacity of Phos-tag™ SDS-PAGE)


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

α-Casein, from BovineMilk, Dephosphorylated

1 mg

038-23221

Mixture of phosphylated and dephosphorylated α-casein

10 mg

034-23223



◆Electrophoresis Apparatus ・ Precast Gels


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

EasySeparator

1 unit

058-07681

An electrophoresis tank for SuperSep precast polyacrylamide gels.

SuperSep Ace, 6%, 13 wells

10 gels

195-15171

Prior to use of SuperSep Phos-tag™ PAGE, please use these as sample confirmation.
Expired in 9 months after manufacture

SuperSep Ace, 7.5%, 13 wells

10 gels

198-14941

SuperSep Ace, 7.5%, 17 wells

10 gels

191-14931

SuperSep Ace, 10%, 13 wells

10 gels

195-14951

SuperSep Ace, 10%, 17 wells

10 gels

192-14961

SuperSep Ace, 12.5%, 13 wells

10 gels

199-14971

SuperSep Ace, 12.5%, 17 wells

10 gels

196-14981

SuperSep Ace, 15%, 13 wells

10 gels

193-14991

SuperSep Ace, 15%, 17 wells

10 gels

190-15001



◆Reagents for Western Blotting


Product Name

Pkg. Size

Wako

Cat. No.

Use Application

ImmunoStar LD*
・Luminescence solution A
・Luminescence solution B

200 cm2

296-69901

Highly sensitive (femto gram level) immunoblotting, utilizing detection by enhanced chemiluminescence using a unique luminol derivative L-012 as a substrate.
Not available for sale in the US and Europe.

1,000 cm2

292-69903

2,000 cm2

290-69904

ImmunoStar Zeta*

200 cm2

291-72401

Use for detection of proteins between the middle and low femto gram levels. Has stable, long-lasting luminescence signal.

1,000 cm2

297-72403

2,000 cm2

295-72404

ImmunoStar Basic*

200 cm2

295-75101

A cost-effective, stable and long-lasting product.

2,000 cm2

291-75103

5,000 cm2

299-75104

Immuno Enhancer

2 assays

294-68601

Ready-to-Use Immunoreaction Enhancer for Western blotting and ELISA

10 assays

290-68603

40 assays

298-68604

* : Not available for sales in the US and Europe.

 

产品编号 产品名称 产品规格 产品等级

E2F-2 (TFE-25)抗体 (HRP 标记) E2F-2 (TFE-25) HRP

E2F-2 (TFE-25)抗体 (HRP 标记)

E2F-2 (TFE-25) HRP

详细描述:
The human retinoblastoma gene product appears to play an important role in the negative regulation of cell proliferation. Functional inactivation of Rb can be mediated either through mutation or as a consequence of interaction with DNA tumor virus-encoded

应用范围:WB, IP, IF, IHC(P), ELISA; 反应种属:m, r, h; Isotype:mouse monoclonal IgG1; 标记:HRP。

货号 产品名称 品牌 购买
货号 名称 单位 购买
sc-9967 HRP E2F-2 (TFE-25)抗体 (HRP 标记) 200 µg/ml 咨询客服

Phos-tag™ 琼脂糖枪头 Phos-tag™ Tip

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

Phos-tag™ 琼脂糖枪头Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

Phos-tag™ Tip

  可特异性捕捉磷酸基团的功能性分子“Phos-tag ™”的磷酸化肽纯化用枪头。

  枪头里含有 Phos-tag ™ 琼脂糖,是即开即用的前处理工具,适用于生理状态下低分子量磷酸化分子(核酸和多肽等)的分离和富集。


原理


把 Phos-tag™ Tip 装在注射器(购买产品附送)上使用。


                                   

Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

 

                                                           

Phos-tag ™ Tip 的结构


Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

优点、特色


 操作时间少于30分钟 

 高回收率可重复利用

 无需昂贵仪器

 缓冲液为生理 pH 条件下


案例、应用


分离磷酸化肽使用例


Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip



Phos-tag™ 系列

磷酸化蛋白新方法!

  Phos-tag™是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot 检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™Agarose)及质谱分析 MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。


◆Phos-tag™ 的基本结构

Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip



原理:


Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip



特点:


●   与 -2 价磷酸根离子的亲和性和选择性高于其它阴离子

●   在 pH 5-8 的生理环境下生成稳定的复合物

相关应用:


Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

相关产品:

 产品名称

 用  途

 Phos-tag™ Acrylamide

 分离:SDS – PAGE 分离不同磷酸化水平的蛋白

 SuperSep Phos-tag™

 分离:预制胶中含有 50 μM Phos-tag™ Acrylamide

 Phos-tag™ Biotin

 检测:代替 Western Blot 检测中的磷酸化抗体

 Phos-tag™ Agarose

 纯化:通用柱层析,纯化磷酸化蛋白

 Phos-tag™ Mass

 Analytical Kit

 分析:用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度


phos-tag™ 由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:

Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

Phos-tag 第6版说明书

Phos-tag™ 琼脂糖枪头                              Phos-tag™ Tip

Phos-tag系列 ver. 8


【参考文献】


·  Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

·  PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

·  Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

·  Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

·  Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

·  Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

·  Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

·  Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

·  The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

·  Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

·  Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

·  Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

·  Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

·  Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

·  A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

·  Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

·  ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

·  Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

·  Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

·  A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

·  The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

·  Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

·  Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

·  Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

·  AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

·  Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

·  Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

·  The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

·  The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

·  Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

·  The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

·  Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

·  Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesjö A, Brings S, Fleming T, et al.

·  Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

·  Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

·  Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

·  Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016, 83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

·  Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

·  PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

·  Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J]. Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

·  The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

·  An optimized guanidination method for large‐scale proteomic studies[J]. Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

·  Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

·  BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

·  Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

·  Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

·  Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

·  Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

·  Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

·  Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

·  Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

·  Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

·  ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016, 60(1): 1-4,Kimura Y, Toda T, Hirano H.

·  The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

·  Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

·  Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

·  Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

·  Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

·  Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

·  Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

·  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha Í L, Roque A C A.

·  In vivo phosphorylation of a peptide tag for protein purification[J]. Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

·  Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

·  Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

·  The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

·  Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

·  Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

·  PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J]. Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

·  Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

·  Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

·  Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

·  Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

·  The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

·  Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

·  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

·  Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

·  The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, et al.

·  Interaction Analysis of a Two-Component System Using Nanodiscs[J]. PloS one, 2016, 11(2): e0149187,Hörnschemeyer P, Liss V, Heermann R, et al.

·  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J]. Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

·  p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

·  Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

·  Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

·  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

·  Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

·  Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

·  Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

·  Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

·  The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

·  Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, Łabuz J, Hermanowicz P, et al.

·  Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016, 143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

·  Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

·  Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

·  DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

·  OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016, 12(6): e1006118,Yang C, Shen W, He Y, et al.

·  Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

·  Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

·  Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

·  Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

·  Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

·  Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

·  A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

·  Advances in crop proteomics: PTMs of proteins under abiotic stress[J]. Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

·  Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

·  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J]. Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

·  Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

·  Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

·  PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J]. Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

·  A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

·  HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

·  Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J]. Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

·  Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.


References on Phos-tag™ Chemistry

  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture moleculeRapid Communications of Mass Spectrometry17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike 

  • Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complexDalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

  • Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule, Journal of Lipid Research45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

  •  Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/TransacylaseJournal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

  • Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins, Journal of Separation Science, 28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike

  • Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance Imaging Techniques Using a Phosphate Capture MoleculeAnalytical Chemistry77, 3979-3985 (2005), K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama

  • Phosphate-binding tag: A new tool to visualize phosphorylated proteins, Molecular & Cellular Proteomics, 5, 749-757 (2006), E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike

  • Enrichment of phosphorylated proteins from cell lysate using phosphate-affinity chromatography at physiological pHProteomics, 6, 5088-5095 (2006), E. Kinoshita-Kikuta, E. Kinoshita, A. Yamada, M. Endo, and T. Koike

  • Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis, Analytical Biochemistry360, 160-162 (2007), S. Yamada, H. Nakamura, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and Y. Shiro

  • Label-free kinase profiling using phosphate-affinity polyacrylamide gel electrophresisMolecular & Cellular Proteomics, 6, 356-366 (2007), E. Kinoshita-Kikuta, Y. Aoki, E. Kinoshita, and T. Koike

  • A SNP genotyping method using phosphate-affinity polyacrylamide gel electrophoresis, Analytical Biochemistry361, 294-298 (2007), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn2+.Phos-tag.)

  • Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag MoleculeJournal of Biomolecular Techniques18, 278-286 (2007), T. Nakanishi, E. Ando, M. Furuta, E. Kinoshita, E. Kikuta-Kinoshita, T. Koike, S. Tsunasawa, and O. Nishimura

  • A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresisAnalytical Biochemistry378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate- affinity SDS-PAGEProteomics, 8, 2994-3003 (2008), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, S. Yamada, H. Nakamura, Y. Shiro, Y. Aoki, K. Okita, and T. Koike

  • FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathwayNature Structural & Molecular Biology15, 1138-1146 (2008), M. Ishiai, H. Kitao, A. Smogorzewska, J. Tomida, A. Kinomura, E. Uchida, A. Saberi, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, S. Tashiro, S. J. Elledge, and M. Takata

  • to Page top

  • Two-dimensional phosphate affinity gel electrophoresis for the analysis of phosphoprotein isotypes Electrophoresis30, 550-559 (2009), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, Y. Aoki, S. Ohie, Y. Mouri, and T. Koike

  • Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leavesBioscience, Biotechnology, and Biochemistry,73, 1293-300 (2009), T. Tanaka, G. Horiuchi, M. Matsuoka, K. Hirano, A. Tokumura, T. Koike, and K. Satouchi

  • A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptidesAnalytical Biochemistry388, 235-241, (2009), K. Takiyama, E. Kinoshita, E. Kinoshita-Kikuta, Y. Fujioka, Y. Kubo, and T. Koike

  • Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysatesAnalytical Biochemistry389, 83-85, (2009), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agaroseProteomics9, 4098- 4101 (2009), E. Kinoshita, E. Kinoshita-Kikuta, H. Ujihara, and T. Koike

  • Separation and detection of large phosphoproteins using Phos-tag SDS-PAGENature Protocols4, 1513-1521 (2009), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike

  • A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tagRapid Communications in Mass Spectrometry24, 1075-1084 (2010), J. Morishige, M. Urikura, H. Takagi, K. Hirano, T. Koike, T. Tanaka, and K. Satouchi

  • Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II) complexesClinical Biochemistry43, 302-306 (2010), E. Kinoshita, E. Kinoshita-Kikuta, H. Nakashima, and T. Koike

  • The DNA-binding activity of mouse DNA methyltransferase 1 is ragulated phosphorylation with casein kinase 1σ/εBiochemical Journal427, 489-497 (2010), Y. Sugiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita


产品编号 产品名称 产品规格 产品等级
387-07321 Phos-tag™ Tip 
Phos-tag™ 琼脂糖枪头
8个