抗嗅标记蛋白,山羊 Anti Olfactory Marker Protein, Goat

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

抗嗅标记蛋白,山羊                              Anti Olfactory Marker Protein, Goat抗嗅标记蛋白,山羊

Anti Olfactory Marker Protein, Goat


成熟嗅觉神经标记抗体

产品编号

产品名称【中文名称】

规格

包装

019-22291

Anti Olfactory Marker Protein, Goat

【抗嗅标记蛋白,山羊】

免疫化学用

100 μL

抗体信息

抗原名

Olfactory Marker Protein(OMP)

适用实验

WB、免疫染色

同种型

IgG

免疫染色图像

(成年鼠嗅味上皮)

抗嗅标记蛋白,山羊                              Anti Olfactory Marker Protein, Goat

抗原信息

啮齿动物OMP

物种交叉反应性

人,小鼠,大鼠,
  有袋类,两栖类

标签

非标签

抗原别名

Olfactory Neuronal-Specific Protein

免疫动物

山羊

克隆号

– (多克隆抗体)

详细信息

Olfactory Marker Protein(OMP)是成熟嗅觉神经表达的可溶性氧蛋白。

本产品是啮齿动物,人类,有袋动物,两栖动物等多种脊椎动物嗅觉神经和其轴突特异性反应的山羊多克隆抗体。

使用文献

1.Koo, J, H. et al., J. Neurochem, 90, 102(2004).

 

产品编号 产品名称 产品规格 产品等级
019-22291 Anti Olfactory Marker Protein, Goat 
抗嗅标记蛋白,山羊
100 μL 免疫化学用

ThruPLEX DNA-seq Kit酶试剂盒Takara

上海金畔生物科技有限公司代理Takara酶试剂盒全线产品,欢迎访问官网了解更多产品信息。

ThruPLEX DNA-seq Kit
品牌 Code No. 产品名称 包装量 价格(元) 说明书 数量
Clontech R400406 ThruPLEX® DNA-seq 48D Kit 48 Rxns ¥19,372 ThruPLEX DNA-seq Kit ThruPLEX DNA-seq Kit ThruPLEX DNA-seq Kit
Clontech R400407 ThruPLEX® DNA-seq 96D Kit 96 Rxns ¥34,866 ThruPLEX DNA-seq Kit ThruPLEX DNA-seq Kit ThruPLEX DNA-seq Kit
Clontech R400428 ThruPLEX® DNA-seq 12S (48)Kit 48 Rxns ¥19,343 ThruPLEX DNA-seq Kit ThruPLEX DNA-seq Kit ThruPLEX DNA-seq Kit
收藏产品 加入购物车
 
 
Illumina测序文库构建
ThruPLEX® DNA-seq Kit
· 高灵敏度、高性能:以低至50 pg至50 ngDNA为起始材料
· 完整的文库构建试剂:优化的检索引物和接头试剂、酶、缓冲液及无核酸酶水
· 快速简便的工作流程:单管或单孔3步操作,2小时,无需转移操作
· 兼容主流目标区域富集平台:Agilent SureSelect®, Roche Nimblegen® SeqCap® EZ
   及 IDT xGen® Lockdown® probes
 
■ 产品说明:
ThruPLEX DNA-seq Kit 基于新的ThruPLEX 技术,可以低至50 pg的DNA起始构建DNA文库,在提高灵敏度的同时可以构建多达96种检索引物文库。本试剂适用于多种样品来源的片段化DNA样品,基因组DNA或体液样品如游离DNA,FFPE样品来源DNA和cDNA。ThruPLEX DNA-seq Kit 整体流程可以在单管或单孔中进行,约2个小时即可完成,无需纯化或样品转移步骤。试剂盒提供12、48或96种Illumina单端或双端检索引物,该系列引物保存在反应管中(6或12)或预分装密封于条形码标记的微孔板中。ThruPLEX DNA-seq Kit 可以用于DNA-seq,RNA-seq,ChIP-seq,并且可以兼容主流平台实现强有力的目标区域富集。
 
ThruPLEX DNA-seq Kit
图1. ThruPLEX DNA-seq Kit单管操作流程。
 
ThruPLEX DNA-seq Kit
图2. ThruPLEX DNA-seq Kit技术概要。ThruPLEX技术以片段化双链DNA起始(0.05 ng至50 ng)只需3步反应,简单高效。
 
ThruPLEX DNA-seq Kit
图3. ThruPLEX DNA-seq Kit 优于其他NGS文库制备试剂。与其他试剂相比,ThruPLEX DNA-seq Kit可以更少的起始DNA,构建多样性更好(左图),重复更少(右图)的文库(25 M read pairs)。NGS文库分别采用图示对照gDNA起始量,以相应的文库制备试剂制备,采用MiSeq v3 flow cell测序。
*数据来源于Takara Bio Inc.

 
ThruPLEX DNA-seq Kit
图4. ThruPLEX DNA-seq Kit 减少了GC偏差。以人类基因组相对覆盖度为GC含量(%)的函数(50 ng DNA起始)。(左图)ThruPLEX DNA-seq Kit 在整个范围内都有出色的覆盖。(右图)ThruPLEX DNA-seq Kit (金色)与参试的其他试剂一样好或更好。请注意,在这些图中最理想的覆盖度应该为1。人类基因组中的GC含量分布以红色柱形图表示。
*数据来源于Takara Bio Inc.

 
ThruPLEX DNA-seq Kit
图5. ThruPLEX DNA-seq Kit的起始量更低、范围更广。与其他试剂相比,ThruPLEX DNA-seq Kit的起始量灵敏度是其他试剂的20倍,起始量范围从50 pg至50 ng,无需流程或接头浓度优化,并且包含检索引物和接头。
 
ThruPLEX DNA-seq Kit
图6. ThruPLEX DNA-seq Kit工作流程优势:2小时即可获得高质量NGS文库。ThruPLEX DNA-seq Kit将双链DNA制备成检索引物文库只需3步:末端修复,接头连接,及高保真文库扩增。 简化的工作流程,在单管或单孔中2个小时即可完成,避免样品损失及操作误差。
 
■ 产品组成
· Template Preparation Buffer(Red)
· Template Preparation Enzyme(Red)
· Library Synthesis Buffer(Yellow)
· Library Synthesis Enzyme(Yellow)
· Library Amplification Buffer(Green)
· Library Amplification Enzyme(Green)
· Nuclease-Free Water(Clear)
· Indexing Reagent(Blue)or Indexing Plate
 
■ 保存
-20℃
 
产品详情请点击:ThruPLEX DNA-seq Kit
 

页面更新:2021-06-07 13:04:06

抗Iba1,兔(用于免疫印迹) Anti Iba1, Rabbit (for Western Blotting)

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

抗Iba1,兔(用于免疫印迹)                              Anti Iba1, Rabbit (for Western Blotting)抗Iba1,兔(用于免疫印迹)

Anti Iba1, Rabbit (for Western Blotting)

小胶质细胞标记抗体(WB用)

产品编号

产品名称【中文名称】

规格

包装

016-20001

Anti Iba1, Rabbit (for Western Blotting)

【抗Iba1,兔(用于免疫印迹)】

免疫化学用

50 μg

抗体信息

抗原名

Iba1

适用实验

WB

同种型

IgG

WB图像

抗Iba1,兔(用于免疫印迹)                              Anti Iba1, Rabbit (for Western Blotting)

数据提供:

国立精神神经医疗研究中心 代谢研究部

抗原信息

Iba1C末端序列肽

物种交叉反应性

人,小鼠,大鼠

标签

非标签

抗原别名

AIF-1, IRT1, Protein G1

免疫动物

克隆号

– (多克隆抗体)

详细信息

Iba1是在巨噬细胞/小胶质细胞特异性表达,分子量17000的钙结合蛋白。近年来,小胶质细胞除了对神经营养·保护作用以外,产生的NO、TNF- α、IL-1 β对神经伤害作用很受关注。

本产品用于WB的Iba1抗体特异性检测小胶质细胞。

使用文献

1. Ito, D., Imai, Y., Ohsawa, K., Nakajima, K., Fukuuchi, Y. and Kohsaka, S. : Brain Res.Mol. Brain Res., 57, 1(1998).
  2. Kanazawa, H., Ohsawa, K., Sasaki, Y., Kohsaka, S. and Imai, Y. : J. Biol. Chem., 277, 20026(2002).

实物图

抗Iba1,兔(用于免疫印迹)                              Anti Iba1, Rabbit (for Western Blotting)

 

欲了解相关资料请点击文字:

Wako神经生物学抗体清单

巨噬细胞/小胶质细胞Iba1抗体

 

 

产品编号 产品名称 产品规格 产品等级
016-20001 Anti Iba1, Rabbit (for Western Blotting) 
抗Iba1,兔(用于免疫印迹)
50 μg 免疫化学用

Rsk-2 (E-1)抗体 (HRP 标记) Rsk-2 (E-1) HRP

Rsk-2 (E-1)抗体 (HRP 标记)

Rsk-2 (E-1) HRP

详细描述:
The family of ribosomal S6 kinases (Rsks), designated Rsk-1 (or MAPKAP kinase-1), Rsk-2 and Rsk-3, are intracellular serine/threonine kinases that are important signaling intermediates in response to a broad range of ligand activated receptor tyrosine kin

应用范围:WB, IP, IF, ELISA; 反应种属:m, r, h; Isotype:mouse monoclonal IgG1; 标记:HRP。

货号 产品名称 品牌 购买
货号 名称 单位 购买
sc-9986 HRP Rsk-2 (E-1)抗体 (HRP 标记) 200 µg/ml 咨询客服

小胶质细胞/巨噬细胞特异性蛋白抗体——Iba1抗体,兔(免疫组化) Anti Iba1, Rabbit (for Immunocytochemistry)

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

小胶质细胞/巨噬细胞特异性蛋白抗体——Iba1抗体,兔(免疫组化)小胶质细胞/巨噬细胞特异性蛋白抗体——Iba1抗体,兔(免疫组化)                              Anti Iba1, Rabbit (for Immunocytochemistry)

Anti Iba1, Rabbit (for Immunocytochemistry)


小胶质细胞标记抗体(免疫染色用)

产品编号

产品名称【中文名称】

规格

包装

019-19741

Anti Iba1, Rabbit (for Immunocytochemistry)

【抗Iba1,兔(免疫细胞化学)】

免疫化学用

50 μg

抗体信息

抗原名

Iba1

适用

实验

免疫

染色

同种型

IgG

免疫染色图像

小胶质细胞/巨噬细胞特异性蛋白抗体——Iba1抗体,兔(免疫组化)                              Anti Iba1, Rabbit (for Immunocytochemistry)

抗原信息

Iba1C末端序列肽

物种交叉反应性

人,小鼠,大鼠

标签

非标签

抗原别名

AIF-1, IRT1, Protein G1

免疫

动物

克隆号


(多克隆抗体)

详细信息

Iba1是与巨噬细胞/小胶质细胞特异性表达,分子量17000的钙结合蛋白。近年来,小胶质细胞除了对神经营养·保护作用以外,产生的NO、TNF- α、IL-1 β对神经伤害作用很受关注。

本产品是与小胶质细胞特异性反应的兔多克隆抗体,适用于与星形胶质细胞特异性GFAP单克隆抗体的双重染色。

使用文献

 [1] Jun,et al.(2017).Nature551(7679),232-236.

 [2] Gibson,et al.(2014).Science344(6183),1252304.

 [3] Yan,et al. (2018).Cell, S009286741830285X.

 [4] Pil,et al. (2018). Nature Medicine.

欲了解相关资料请点击文字:

Wako神经生物学抗体清单

巨噬细胞/小胶质细胞Iba1抗体

◆相关资料


Iba1抗体选择指南


小胶质细胞/巨噬细胞特异性蛋白抗体——Iba1抗体,兔(免疫组化)                              Anti Iba1, Rabbit (for Immunocytochemistry)

Iba1抗体系列

参考文献


◆Nature


 1.

Lam, C.K., et al.: Nature, 465, 478(2010).

Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization.

 2.

Stefater, J. A. 3rd. et al.: Nature, 474, 511(2011).   

Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells.

 3.

Deng, H. X., et al.: Nature, 477, 211(2011).

Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia.

 4.

Lee, Y., et al.: Nature, 487, 433(2012).

Oligodendroglia metabolically support axons and contribute to neurodegeneration.

 5.

Heneka, M. T., et al.: Nature, 493, 674(2013).

NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice.

 6.

Shao, W., et al.: Nature, 494, 90(2013).

Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin

 7.

Zhang, G., et al.: Nature, 497, 211(2013).

Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH

 8.

Chung, W. S., et al.: Nature, 504, 394(2013).

Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways.

 9.

Roth, T. L., et al.: Nature, 505, 223(2014).

Transcranial amelioration of inflammation and cell death after brain injury

10.

Najm, F. J., et al.: Nature, 522, 216(2015).

Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo.


11.

Fourgeaud, L., et al.: Nature, 532, 240(2016).

TAM receptors regulate multiple features of microglial physiology.

12.

Vasek, M. J., et al.: Nature, 534, 538(2016).

A complement-microglial axis drives synapse loss during virus-induced memory impairment.


13.

Iaccarino, H. F., et al.: Nature, 540, 230(2016).

Gamma frequency entrainment attenuates amyloid load and modifies microglia.

14.

Bialas, A. R. et al.: Nature, 546, 539(2017).

Microglia-dependent synapse loss in type I interferon-mediated lupus

15.

Mass, E., et al.: Nature, 549, 389(2017).

A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease.

16.

Jun, J. J., et al.: Nature, 551, 232(2017).

Fully integrated silicon probes for high-density recording of neural activity.

17.

Bussian, T. J., et al.: Nature, 562, 578(2018).
Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.

◆CELL


 1.

Lujambio, A., et al.: Cell, 153, 2, 449(2013).

Non-Cell-Autonomous Tumor Suppression by p53.

 2.

Parkhurst, C. N., et al.: Cell, 155, 7, 1596(2013).

Microglia promote learning-dependent synapse formation through brain-derived neurotrophic

factor.

 3.

Wang, Y., et al.: Cell, 160, 6, 1061(2015).

TREM2 Lipid Sensing Sustains the Microglial Response in an Alzheimer’s Disease Model.

 4.

Keren-Shaul, H., et al.: Cell, 169, 7, 1276(2017).

A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease.

 5.

Ulland, T. K., et al.: Cell, 170, 4, 649(2017).

TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease.

 6.

Qin, Y., et al.: Cell, 174, 1, 156(2018).

A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System.

 7.

Yan, S., et al.: Cell, 173, 4, 989(2018).

A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in

Huntington's Disease

◆Nature Medicine


 1.

Heppner, F. L., et al.: Nat. Med., 2, 146(2005).  

Experimental autoimmune encephalomyelitis repressed by microglial paralysis.

 2.

Nikić, I., et al.: Nat. Med., 4, 495(2011).

A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple

sclerosis.


 3.

Vom, B. J., et al.: Nat. Med., 12, 1812(2012).

Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease–like pathology and cognitive

decline

 4.

Minami, S. S., et al.: Nat. Med., 10, 1157(2014).

Progranulin protects against amyloid β deposition and toxicity in Alzheimer's disease mouse

models.

 5.

Yun, S. P., et al.: Nat. Med., 7, 931(2018).

Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease.

 6.

Mount, C. W., et al.: Nat Med. 5, 572(2018).

Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas.

 

◆Nature Neuroscience


 1.

Zhang, K., et al.: Nat. Neurosci., 10, 1064(2003).

HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes

neurodegeneration.

 2.

Ajami, B., et al.: Nat. Neurosci., 12, 1538(2007).

Local self-renewal can sustain CNS microglia maintenance and function throughout adult life

 3.

Mildner, A., et al.: Nat. Neurosci., 12, 1544(2007).

Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host

conditions.

 4.

Bero, A. W., et al.: Nat. Neurosci., 6, 750(2011).

Neuronal activity regulates the regional vulnerability to amyloid-β deposition.

 5.

Fancy, S. P., et al.: Nat. Neurosci., 14, 1009(2011).

Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination.

 6.

Ajami, B., et al.: Nat. Neurosci., 14, 1142(2011).

Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool.

 7.

Mosher, K. I. et al.: Nat. Neurosci., 11, 1485(2012).

Neural progenitor cells regulate microglia functions and activity.

 8.

Lehmann, S. M., et al.: Nat. Neurosci., 6, 827(2012).

An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes

neurodegeneration.


 9.

Kierdorf, K., et al.: Nat. Neurosci., 3, 273(2013).

Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways

10.

Bialas, A. R. et al.: Nat. Neurosci., 12, 1773(2013).

TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement

11.

Butovsky, O., et al.: Nat. Neurosci., 1, 131(2014).

Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia.

12.

Saito, T., et al.: Nat. Neurosci., 5, 661(2014).

Single App knock-in mouse models of Alzheimer's disease.

13.

Erny, D., et al.: Nat. Neurosci., 7, 965(2015).

Host microbiota constantly control maturation and function of microglia in the CNS.


14.

Sorge, R. E. et al.: Nat. Neurosci., 8, 1081(2015).

Different immune cells mediate mechanical pain hypersensitivity in male and female mice.

15.

Hama, H., et al.: Nat. Neurosci., 10, 1518(2015).

ScaleS: an optical clearing palette for biological imaging.

16.

Asai, H., et al.: Nat. Neurosci., 11, 1584(2015).

Depletion of microglia and inhibition of exosome synthesis halt tau propagation.

17.

Guan, Z., et al.: Nat. Neurosci., 1, 94(2016).

Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain.

18.

Grabert, K., et al.: Nat. Neurosci., 3, 504(2016).

Microglial brain region-dependent diversity and selective regional sensitivities to aging

19.

Gonçalves, J. T., et al.: Nat. Neurosci., 6, 788(2016).

In vivo imaging of dendritic pruning in dentate granule cells

20.

Liu, Q., et al.: Nat. Neurosci., 2, 243(2016).

Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation.

21.

Safaiyan, S., et al.: Nat. Neurosci., 8, 995(2016).

Age-related myelin degradation burdens the clearance function of microglia during aging.

22.

Pandya, H., et al.: Nat. Neurosci., 5, 753(2017).

Differentiation of human and murine induced pluripotent stem cells to microglia-like cells

23.

Füger, P., et al.: Nat. Neurosci., 10, 1371(2017).

Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging

 

◆Nature Immunology


 1.

Wang, Y., et al.: Nat. Immunol., 13, 753(2012).

IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and

microglia.

 2.

Goldmann, T., et al.: Nat. Immunol., 17, 797(2016).

Origin, fate and dynamics of macrophages at central nervous system interfaces


 3.

Haimon, Z., et al.: Nat. Immunol., 19, 636(2018).

Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.

◆Nature Biotechnology


 1.

Park, S. I., et al.: Nat. Biotechnol., 33, 1280(2015).

Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics

 2.

Staahl, B. T., et al.: Nat. Biotechnol., 35, 431(2017).

Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein

complexes

◆Nature Methods


 1.

Clark, J. J., et al.: Nat. Methods., 7, 126(2010).

Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals

 2.

Prevedel, R., et al.: Nat. Methods., 13, 1021(2016).
Fast volumetric calcium imaging across multiple cortical layers using sculpted light

◆Neuron


 1.

Simard, A. R., et al.: Neuron, 49, 4, 489(2006).

Bone marrow-derived microglia play a critical role in restricting senile plaque formation in

Alzheimer's disease.

 2.

Bhaskar, K., et al.: Neuron, 68, 1, 19(2010).

Regulation of tau pathology by the microglial fractalkine receptor.

 3.

Bergmann, O., et al.: Neuron, 74, 4, 634(2012).

The Age of Olfactory Bulb Neurons in Humans

 4.

Schafer, D. P., et al.: Neuron, 74, 4, 691(2012).

Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.

 5.

Paolicelli, R. C., et al.: Neuron, 95, 2, 297(2017).

TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss.

 6.

Tufail, Y., et al.: Neuron, 93, 3, 574(2017).

Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.

 7.

Abud, E. M., et al.: Neuron, 94, 2, 278(2017).

iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases.

 8.

Bohlen, C. J., et al.: Neuron, 94, 4, 759(2017).

Diverse Requirements for Microglial Survival, Specification, and Function Revealed by

Defined-Medium Cultures.

 9.

De, Biase, L. M., et al.: Neuron, 95, 2, 341(2017).

Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia.

10.

Hwang, H. W., et al.: Neuron, 95, 6, 1334(2017).

cTag-PAPERCLIP Reveals Alternative Polyadenylation Promotes Cell-Type Specific Protein Diversity

and Shifts Araf Isoforms with Microglia Activation.

11.

Lehrman, E. K., et al.: Neuron, 100, 1, 120(2018).

CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development.

12.

López-Erauskin, J., et al.: Neuron, 100, 4, 816(2018).

ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease

Without Nuclear Loss-of-Function of FUS

产品编号 产品名称 产品规格 产品等级
019-19741 Anti Iba1, Rabbit (for Immunocytochemistry) 
抗Iba1,兔(免疫细胞化学)
50 μg 免疫化学用