上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Aminopropargyl ddATP [7-Deaza-7-Propargylamino-2′,3′-dideoxyadenosine-5′-triphosphate] CAS 114748-69-5
货号 | 17074 | 存储条件 | 在零下15度以下保存, 避免光照 | |
规格 | 10 umoles | 价格 | 11748 | |
Ex (nm) | Em (nm) | |||
分子量 | 615.19 | 溶剂 | Water | |
产品详细介绍 |
简要概述
产品基本信息
货号:17074
产品名称:Aminopropargyl ddATP [7-Deaza-7-Propargylamino-2′,3′-dideoxyadenosine-5′-triphosphate]
CAS:114748-69-5
规格:10 umoles
储存条件:-15℃避光防潮
保质期:24个月
产品物理化学光谱特性
分子量:615.19
外观:液体
溶剂:DMF
激发波长(nm):N/A
发射波长(nm):N/A
产品介绍
Sanger法是DNA测序中最早最靠谱的方法之一,DNA由四种脱氧核苷酸三磷酸(dNTP)合成。将每个新核苷酸添加到最后的dNTP的3′-OH基团中。可以将二脱氧胸苷三磷酸(ddTTPs)添加到正在生长的DNA链中,但是当它出现时,链延长会停止,因为下一个要连接的核苷酸没有3′-OH。待测序的DNA被制备成单链。该模板DNA带有大量dATP,dGTP,dCTP和dTTP的混合物。加入四种双脱氧核苷酸(ddATP,ddGTP,ddCTP和ddTTP)的混合物,每种混合物均以限量存在,并分别用发不同颜色的荧光的“标签”标记。因为所有四个正常核苷酸都存在,所以链延伸正常进行,直到偶然地DNA聚合酶插入ddNTP(而不是正常dNTP)。如果正常核苷酸与双脱氧形式的比率足够高,则在插入ddNTP之前,某些DNA链将成功添加数百个核苷酸,从而终止该过程。在孵育期结束时,片段的长度从最长到最短分离,一个核苷酸之间的差异足以使该链与下一较短和下一较长链分开。当被激光束照射时,四个DDNTP中的每一个都会发出不同的荧光,可以通过自动扫描仪打印输出序列。这些ddATP,ddGTP,ddCTP和ddTTP胺衍生物是开发Sanger测序试剂的重要组成部分。金畔生物是AAT Bioquest的中国代理商,为您提供最优质的Aminopropargyl ddATP [7-Deaza-7-Propargylamino-2′,3′-dideoxyadenosine-5′-triphosphate]。
参考文献
Polyadenylated sequencing primers enable complete readability of PCR amplicons analyzed by dideoxynucleotide sequencing
Authors: Beranek, M., Drastikova, M., Petera, J.
Journal: Acta Medica (Hradec Kralove) (2012): 160-4
UV-induced bond modifications in thymine and thymine dideoxynucleotide: structural elucidation of isomers by differential mobility mass spectrometry
Authors: St-Jacques, A., Anichina, J., Schneider, B. B., Covey, T. R., Bohme, D. K.
Journal: Anal Chem (2010): 6163-7
Analysis of processivity of mungbean dideoxynucleotide-sensitive DNA polymerase and detection of the activity and expression of the enzyme in the meristematic and meiotic tissues and following DNA damaging agent
Authors: Roy, S., Choudhury, S. R., Sengupta, D. N.
Journal: Arch Biochem Biophys (2008): 55-65
A dideoxynucleotide-sensitive DNA polymerase activity characterized from endoreduplicating cells of mungbean (Vigna radiata L.) during ontogeny of cotyledons
Authors: Roy, S., Sarkar, S. N., Singh, S. K., Sengupta, D. N.
Journal: FEBS J (2007): 2005-23
Mechanism-based suppression of dideoxynucleotide resistance by K65R human immunodeficiency virus reverse transcriptase using an alpha-boranophosphate nucleoside analogue
Authors: Selmi, B., Boretto, J., Sarfati, S. R., Guerreiro, C., Canard, B.
Journal: J Biol Chem (2001): 48466-72
Synthesis of the first ferrocene-labeled dideoxynucleotide and its use for 3′-redox end-labeling of 5′-modified single-stranded oligonucleotides
Authors: Anne, A., Blanc, B., Moiroux, J.
Journal: Bioconjug Chem (2001): 396-405
Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus
Authors: Evans, S. J., Fogg, M. J., Mamone, A., Davis, M., Pearl, L. H., Connolly, B. A.
Journal: Nucleic Acids Res (2000): 1059-66
Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation
Authors: Li, Y., Mitaxov, V., Waksman, G.
Journal: Proc Natl Acad Sci U S A (1999): 9491-6
Characterization of the native and recombinant catalytic subunit of human DNA polymerase gamma: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity
Authors: Longley, M. J., Ropp, P. A., Lim, S. E., Copel and W. C.
Journal: Biochemistry (1998): 10529-39
Comparative performance of high-density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples
Authors: Gunthard, H. F., Wong, J. K., Ignacio, C. C., Havlir, D. V., Richman, D. D.
Journal: AIDS Res Hum Retroviruses (1998): 869-76